
Reprinted from the Proceedings of the Third International Conference on Artificial Intelligence Applications on Wall Street, June 1995.

Fast Cost-Effective Computations of Derivatives

Roy S. Freedman Rinaldo DiGiorgio
 Inductive Solutions, Inc. Sun Microsystems, Inc.

 380 Rector Place 1 New York Plaza — 35th Floor
 New York, NY 10280 New York, NY 10004
 Roy@Inductive.com Rinaldo.DiGiorgio@East.Sun.com

Abstract
The essential idea of this paper is that one should not
separate the method of computing the expected present
value of a derivative from its ultimate computing
topology. In the following sections, we discuss the cost-
benefit issues involved with implementing several
methods for computing derivative statistics on alternate
computing topologies. We show how the choice of
topology impacts the computing time for a particular
example of a time consuming derivative valuation. We
conclude by showing how all these factors can be
represented as a case-based expert system, which can be
used to help an organization assess its computing
alternatives.

1. Background: Algorithm Tradeoffs in
 Computing Derivatives
We are concerned with the computational problem of
deriving the expected value and other statistics of a
derivative security f at time T0. When the underlying
security S and derivative security f are modeled as
stochastic processes, the problem can be solved by
reformulating it as a boundary-value problem: if it is
known that the derivative pays out fT at time T, we just
compute its value backwards from the risk adjusted
random price movements of the underlying from t=T to
t= T0. The present value of f is just its expected
discounted value in a risk-neutral world

Expected Present Value = E[e-r(T-To)fT] (1)

Here, r is the average instantaneous risk-free interest rate
between t=T0 and t=T. When the underlying S follows
an Ito process, and if the derivative is a differentiable
function of S and t, f=f(S,t), then by Ito’s Lemma, f also
follows an Ito process:

dS = µ(t,S) dt + σ(t,S) dz (2S)

df = (∂f/ ∂S)dS +

 [∂f/ ∂t + (1/2)σ2(t,S)(∂2f/ ∂S2)] dt (2f)

and f satisfies the Fokker-Plank forward diffusion
equation

∂f/ ∂t =1/2(∂2/∂S2)[σ2(t,S) f] - (∂/ ∂S)[µ(t,S) f]
(2FP)

given initial condition S(T0) = S0.

Here S(t) is the probability distribution of the price of the
underlying at time t, µ(t,S) and σ(t,S) are the
instantaneous drift and standard deviation rates, and dz is
a Wiener Process that corresponds to Brownian motion.
Note that if we know the probability distributions for S(t),
and if we are given boundary conditions for f (which
define the derivative), then we can solve (2FP) and derive
the probability distribution for f, so that the expected
present value of f can be computed from Equation (1).

The above equations are valid for all derivative securities
with S as the underlying stochastic variable [4]. A vector
form of Equation (2S) and (2f) is valid if S depends on
other Ito processes (for example, if µ or σ are Ito
processes). Here, the correlations of the underlying
processes are additional factors in the dt term in Equation
(2f).

Simplifications can be made: if the interest rate r is
known to be constant, then it can be shown that the Ito
process for [S∂f/ ∂S)-f] does not depend on dz — this
“continuous” hedge is “riskless.” Hence, in this case, f
satisfies the Black-Scholes partial differential equation

∂f/ ∂t = (2BS)

rf - (1/2)S2σ2(t,S)(∂2f/ ∂S2) - rS(∂f/ ∂S)

Equation (2BS) can be solved if S(t) is known and the
boundary conditions that define the derivative f are
provided. For example, a boundary condition for a

2

European call option is

At t = T, f(T) = fT = max(ST - X, 0) (2CO)

In practice, in all but the simplest cases, the price
movements of S and f follow stochastic processes that
involve substantial amounts of computation. There are
three general methods that have different computational
consequences for computing European-style derivatives
(the holder has no decisions to make during its life) and
American-style derivatives (the holder has decisions to
make during its life):

Method 1. Analytic Approximation for Constant
Parameters. If the derivative is a European-style
derivative, and the Ito process in Equations (2S), (2f), and
(2BS) has constant µ(t,S) = µ, constant σ(t,S) = σ, and
constant interest rate, then computationally nice
expressions exist for the derivative security — the famous
formulas derived by Black and Scholes. Analytic
expressions also exist for approximating the values of
American-style derivatives. In Method 1, the time
required to compute the expected value of f is
proportional to a constant factor G — the time required to
evaluate the formula. In general, G depends on the
efficiency of computation of special functions (like the
normal distribution).

Method 2. Recombining Lattice-Type Computations. If
the Ito process in Equations (2S), (2f), and (2BS) has
constant µ(t,S) = µ, constant σ(t,S) = σ, and constant
interest rate, then the valuation of a European- or
American-style derivative is usually computed by
simulating the up-down price movements in a
recombining binomial lattice. (The lattice is a discrete
form of Equation (2S-2f), and is also related to a discrete
form of (2FP) and (2BS)). In this method, the time
required to compute the value of a derivative depends on
the number of time units N, where N = (T-T0)/∆t, and ∆t
is the smallest unit of time considered in the computation.
In this method, a sequence of up movements followed by
down movements are valued the same as the down
movements followed by the up movements. At any given
point in time T0+ i∆t, the price of the underlying may
increase or decrease by an amount u and d with
probability p and (1-p) respectively. Hence, at time T0+
i∆t, the price of the underlying may be any of a set of i+1
values:

S u j d i-j where i=0,..N; j = 0,..,i.
A recombining binomial lattice must compute and store a
total of (N+1)(N+2)/2 prices for the underlying and

derivative. For N=500, this requires approximately 105
computations, and represents much greater computational
overhead than Method 1. This method may require
several orders of magnitude of computation than Method
1.

Method 3. Non-Recombining Simulation. If f is a
European-style derivative, and the Ito process in
Equations (2S), (2f), and (2FP) has non-constant µ(t,S),
non-constant σ(t,S), and possibly non-constant interest
rate, then Method 2 may not work because the up values
and down values of a price movement may not combine:
a sequence of up movements followed by down
movements are not valued the same as the down
movements followed by the up movements.
Consequently, in evaluating the possible price of S, after
N time increments there are 2N+1 possible prices (none
are recombined as in Method 2; if recombining is
allowed, there are only (N+1)(N+2)/2 prices). In Method
3, where recombining is not possible, all 2N+1 possible
prices must be generated to get the “complete”
distribution for the expected value in Equation (1).
Pragmatically, this is impossible, since for n=500, this is
approximately 10150 prices. The alternative here is to
create a representative random “Monte Carlo sample” of f
so that the expectation in Equation (1) can be computed
directly from the random sample of prices, and not from
the complete set of prices. In Method 3, the time required
to compute the value of a derivative depends on the
number of discrete time units N and the number of Monte
Carlo samples M generated for f. Accuracy in the
evaluation of f is a statistical problem relating to the
standard error of the estimate of the sample mean. Since
it is known that the standard error in computing an
expectation is proportional to M1/2, reduction of the
error by a factor of 2 necessitates increasing M by a factor
of 4. Consequently, different “variance reduction”
techniques could be employed [2]. Note that in using
Method 3, a model for S can depend on other Ito
processes: for k processes, a complete set of N time
samples would require 2k(N+1) computations. Method 2
may require several orders of magnitude of computation
more than Method 2.

Methods (1), (2), (3) can also be combined. For example,
one can value an American-style derivative with
stochastic average interest rate and stochastic average
volatility by generating Monte Carlo samples for r and
σ as input to a recombining binomial lattice for f.
Computational infrastructure is stretched when these
three methods are used to value a portfolio of P

3

derivatives. Consequently, the total amount of
computation required for a portfolio is proportional to:

P*G, for Method 1
N*P, for Method 2
N*M*P, for Method 3

and, in general, the computation time for each method
corresponds to

Method1 << Method 2 << Method 3.

2. Incorporating More Computing
 Power
There are tradeoffs in model accuracy and computing
time in the three above Methods. These model tradeoffs
are further compounded by the computational tradeoffs in
alternative computing infrastructure. There are several
ways of incorporating additional computing power to
speed up the computation of derivatives, and the
“obvious” answer of “getting a faster computer” may not
be obvious, or may even be “obviously wrong.” For
example:

“We have alot of programmers who write C
applications. We have alot of Unix workstations,
but most are efficiently used all day and all night.
Our derivative evaluation application is based on
Monte Carlo methods, and we need to improve
the accuracy without sacrificing time.”

“We need to evaluate our very large portfolio in
almost real time. We already have a
supercomputer but we could use 2 more. Should
we buy another million-dollar parallel processor?
We have alot of idle workstations.”

“We run a lattice-type American-style valuation
application each day on my entire inventory. We
can do one evaluation each day. We keep getting
more clients. Should I go back to a Black-
Scholes formula? My application runs on a PC
and I do not understand parallel computation. We
have no programmers on staff.”

The alternative computing topologies considered here are
(listed in order of increasing cost):

1. Workstations
2. Faster Workstations
3. Networked (“Clustered”) Systems, that could
 contain workstations, supercomputers, or both.
4. Supercomputers

Their general characteristics are summarized in Figure 1.

Figure 1. Alternate Computing Topologies

The problem that we address in this paper is concerned
with the cost effective computation of the expected value
in Equation (1), with respect to the tradeoffs between
Methods 1-3 and the above computing topologies. Note
that these alternatives are not mutually exclusive, their
boundaries are “fuzzy” and they may be combined.

The essential idea of this paper is that one should not
separate the method of computing the expected value in
Equation (1) from its ultimate computing topology.
Different topologies may be more cost-effective than
other topologies. This is a point also made in [1], even
though their evaluation was basically concerned with
showing the computing potential of the cluster topology,
not its cost-benefit tradeoffs with respect to an
organization’s requirements.

In the following sections, we discuss the cost-benefit
issues involved with implementing the above methods for
computing Equation (1) on alternate computing
topologies. We show how the choice of topology impacts
the computing time for a particular example of a time
consuming derivative valuation. We conclude by
showing how all these factors can be represented as a
case-based expert system, which can be used to help an
organization assess its computing alternatives.

3. Risk Tradeoffs of Alternative
 Computing Topologies
The problem is: Given the algorithmic alternatives and
parameters G, N, M, P as defined in Section 1, find a
computing topology that minimizes the time and cost
required for a valid computation. It is convenient to group
the costs into the categories of Opportunity Costs,
Infrastructure Costs, and Algorithmic Costs. The first
two costs are general and may be applied to any kind of
alternative topology problem; Algorithmic Costs are
specific to derivative computations. From another
perspective, these costs can be used to describe
potentially new benefits of changing to an alternative
topology: if the business benefit does not outweigh the

Number of Speed in Memory in Cost
Processors MFLOPS MBytes $K

Workstation 1 1-25 32 <10
Faster Workstation 1-4 >25 64 >10

Cluster >1 >2000 >128 40 -4000
Supercomputer >1 2000 >128 1000-20000

4

other costs, then there may be no cost-effective reason to
change.

Opportunity Costs. These costs reflect the risks
associated with the nature of the routine function of the
business. Assessed here are the costs of a late answer,
cost of a wrong answer, cost of no answer, and cost of
infrastructure breakdown. For example, a fixed income
group may require real time evaluation of their entire
derivative position 30 minutes before the monthly speech
of the Federal Reserve Chairman. If this cannot be done,
then there is an opportunity cost.

Infrastructure Cost. These costs reflect the risks
associated with maintaining the existing computing
infrastructure as well as the additional risks of modifying
the infrastructure to a new topology. Assessed here are
Client-Server Costs (costs of additional workstations and
servers, together with software); Network Costs (costs of
network hardware and software); Infrastructure
Modification Costs, Runtime Costs; and System
Administration Cost.

The cost and benefit tradeoffs can indicate whether
“getting a faster computer” presents a good alternative:
the network performance impact is almost as great as the
computing processing. For example, purchasing a
supercomputer may result in slower performance if the
network the supercomputer is on is slow or is saturated
with traffic. Figure 2 further illustrates the impact of
network performance on computation. This table shows,
for example, that during the time that one computer is
sending another computer 1 Megabyte of data, the other
computer could have done over 100 million floating point
divides. This latency only gets worse for memory-
intensive computation. The derivative evaluation
problem is more compute-intensive than memory
intensive. On the other hand, some implementations of
Method 2 may send large lattices around a network : for
N=500, this would amount to about 1 Megabyte.

To send 1MB No. of float divides
Ethernet (Network) requires (sec)... on 200MHz chip...
Regular Ethernet 0.56 112,000,000
Fast Ethernet 0.056 11,200,000
OC-3 0.051612903 10,322,581
OC-24 0.006451613 1,290,323
SP2 0.033333333 6,666,667

Tightly Coupled (Parallel Processor Backplane)
100MB/sec bp 0.01 2,000,000
320 MB/sec 0.003125 625,000
640 MB/sec 0.0015625 312,500
1200 MB/sec 0.00078125 156,250

Figure 2. Network Speed vs. Computation

Algorithmic Costs. These costs reflect the risks
associated with maintaining the existing computing
algorithm as well as the additional risks of modifying and
porting the algorithms so they work on the new topology.
Assessed here are the costs of optimizing an algorithm.
While many compilers offer one such level of
optimization, two other levels of analysis should also be
performed. On a macro level, there is a cost-benefit
analysis involved in determining the best combination of
Methods 1-3. This is essentially the job of the model
builder. From a micro perspective, there is a degree of
algorithm optimization that is orthogonal to that produced
by compiler optimizations. One such optimization is
concerned with building a parallel version of the
algorithm. The idea here is to implement the algorithm in
such a way so that n-processors can solve the problem in
(1/nth) the time as one processor. Moreover, new
processors actually require “supercomputer style”
optimizations (such as loop unrolling, blocking, and
memory access patterns) to keep data paths efficient.

At this point the tradeoffs between a weakly-coupled
parallelism versus a fine-grained parallelism should be
addressed.

Method 3 is a problem that can be solved with weakly-
coupled parallelism: for example, Monte Carlo samples
can be generated on two different processors, f can be
evaluated, and the discounted expected value computed
on a third processor. The first two processors are totally
independent of each other (assuming they both do not
generate the same set of “random” samples).
Consequently, one can optimally expect a 2:1 speed-up
(minus the communication overhead discussed above).
Weakly-coupled applications require relatively little
effort in creating a parallel speed-up.

5

Method 2 is a problem that can be solved with fine-
grained parallelism It can be shown that each
computation along the diagonal of the lattice can be done
in parallel. Consequently, an algorithm can be configured
(or “vectorized” by a skilled programmer) that, at time k,
computes the values of S and f in the k+1 nodes on k+1
processors (see Figure 3).

k=0

k=1

k=2

k=3

Figure 3. Fine-Grained Parallelism of Recombining
Lattice Method

Consequently, if N processors are available, instead of
performing (N+1)(N+2)/2 sequential computations, a
fine-grained parallel implementation requires only (N+1)
sequential computations. Fine-grained parallelization
usually requires more effort in modifying the algorithm
than weakly-coupled parallelization.

Both weakly-coupled and fine-grained parallelization
techniques require a topology to support different
parallelization operators. Fine-grained topologies often
rely on semaphores, condition variables, and shared
memory areas. Some of the operators for the weakly-
coupled topologies include:

Broadcast. One processor node sends the same message
to other nodes. The simplest broadcast operation is to
start running all programs on all nodes.

Scatter. One processor node sends a different message to
each node. An example: in Method 3, we can use a
scatter operation start running all programs with a
different seed to the random number generator.

Gather. Every processor node sends a message to a
single member. An example: we gather the Monte Carlo
sampled values f for averaging at processor node 0.
Barrier Synchronization. All processor node must reach
the same point before any can proceed. An example: in
the fine-grained parallelism of Method 2, computation
must synchronize for each diagonal to be completed.

4. Evaluating Tradeoffs: An Example
The following problem, using the most compute-intensive
aspects of Method 2 and Method 3, was used as a
benchmark in evaluating topology tradeoffs. S follows an
Ito process with constant µ and σ, and f is an American-
style derivative. We use a recombining lattice to find the
expected value of f. Next, we vary the average
instantaneous interest rate r in by taking 1000 Monte
Carlo samples. Thus the value of f is the sample average
of 1000 lattice evaluations. The algorithm was
implemented to support the weakly-coupled parallelism
of Method 3.

We compare the impact of several implementations in
Figure 4.

Time for 1 Time for 1000 No. of
Sample (sec) Samples (sec) Processors

Workstation 5 5000 1
Faster Workstation 1 1000 1

Cluster (PVM) 3 crashed 4
Cluster (PVM/custom) 3 4-103 1000

Cluster-(PVM/SMP) 0.225 225 4
Supercomputer 0.03 30 40

Figure 4. Benchmark Performance of 6 Computing
Topologies

The clusters were implemented under Parallel Virtual
Machine, a package that permits the utilization of a
heterogeneous network of parallel and serial computers as
a single computational resource [7].

The three cluster implementations of the benchmark
problem. In the first cluster inplementation, the
benchmark problem crashed the system. There were too
many Monte Carlo requests for the network task
scheduler to handle the barrier operations. In the second
cluster inplementation, the problem was reconfigured to
allocate one Monte Carlo sample to each processor. The
time rquired to perform 1000 samples then depended on
the latency of the network: it is variable because the
network is a shared resource. In the third cluster
inplementation, the network was a dedicated high-speed
backplane (see Figure 2). In this “Symmetric Multi-
Processing” implementation, only four processors were
allowed to be active at one time.

These results show that the underlying network topology,
is the crucial factor in designing cluster computing
solutions. Similar results on cluster computing
performance are discussed in [8].

6

5. An Expert System for Assessing
 Computing Alternatives
We have collected several cases that can be used to assess
the transition between alternative computing technologies
for the optimal computation of Methods 1-3. There are
16 basic cases, corresponding to the pairwise transitions
between each of the 4 topologies, and the null transition
— the alternative of keeping the computing topology the
same. Our cases were derived by examining similar
transition problems for other compute-intensive
applications. Our case profiles include the attributes
discussed in Section 2, concerned with opportunity cost,
infrastructure cost, and algorithmic cost. As in other
case-based reasoning systems, our cases contain typical
examples and counter-examples (exceptions). We
summarize the conclusions of the typical cases:

Case 1. Workstation to Workstation.
Alternatives provide marginal gain in performance.
Alternatives are too expensive. No skills to perform
algorithm modification. Algorithm is difficult to
parallelize.

Case 2. Workstation to Faster Workstation.
No algorithm modification required. Limited Budget.

Case 3. Workstation to Supercomputer .
Algorithm exploits utilization of vectors and vector
operations. Budget for the supercomputer is available.
Workstations all busy. Bad network infrastructure.
Require consistent performance. Skills available to
modify algorithm and optimize in FORTRAN. Low
modification costs.

Case 4. Workstation to Cluster .
Have many workstations and budget is available to buy
more workstations. Other departments will allow limited
use of their workstations. Problem cannot be solved with
supercomputers.

Case 5. Faster Workstation to Workstation.
Lose of Budget.
Case 6. Faster Workstation to Faster
Workstation. Alternatives provide marginal gain in
performance. Alternatives too expensive. No skills to do
the rehosting. Algorithm is difficult to parallelize.

Case 7. Faster Workstation to Super- computer.
Generally same as Case 3.

Case 8. Faster Workstation to Cluster.
Generally same as Case 4.

Case 9. Supercomputer to Workstation.
Lose of Budget. Performance not good enough to
continue justification of Supercomputer. Algorithm is too
memory-intensive and too large for the Supercomputer.
Staff unable to program in FORTRAN to get maximum
Supercomputer performance.

Case 10. Super Computer to Faster Workstation. Fast
Workstations can provide 50% of Supercomputer
performance at 10% of the price.

Case 11. Super Computer to Cluster.
Lose of Budget. Performance not good enough to
continue justification of Supercomputer. There are many
workstations available. Algorithm is too memory-
intensive and too large for Supercomputer. Staff unable
to program in FORTRAN to get maximum
Supercomputer performance.

Case 12. Super Computer to Super Computer.
Algorithm performance is satisfactory. New algorithm
developed for supercomputer will not work on anything
else: cost to reimplement is high. New model upgrade
costs are low.

Case 13. Cluster to Workstation.
Solution is having a negative impact on business,
primarily due to the saturation of the network.
Performance at desktop is being hurt. Everyone is getting
a workstation to exploit the computing capability.

Case 14. Cluster to Faster Workstation.
Same as Case 13. Can afford more power per desktop.

Case 15. Cluster to Cluster.
Future model of computing topology. Algorithm
performance is satisfactory. New model upgrade costs
are low. New faster network topologies becoming
available.
Case 16. Cluster to Supercomputer.
Solution is having a negative impact on business,
primarily due to the saturation of the network.
Performance at desktop is being hurt. Everyone is getting
a workstation to exploit the computing capability.
Algorithm exploits utilization of vectors and vector
operations. Budget available. Workstations all busy.
Bad network infrastructure. Require consistent
performance. Skills available to modify algorithm and
optimize in FORTRAN. Low modification costs.

7

In operation, a problem profile representing attributes
relating to the opportunity costs, infrastructure costs, and
algorithmic costs are entered in case fields. The expert
system then compares each case to the problem profile,
and then ranks all cases by similarity.

It seems that as workstation costs decline, the cluster
topology becomes more cost effective. However, as seen
in the above cases, this alternative is not without
problems. A better statement is that as workstation costs
and networks improve, the cluster topology will become
more cost effective. An important trend that can further
improve cost-effective computation is the development of
intelligent resource (process and processor) allocation
and network load schedulers built into all operating
systems ([3], [5],[6]).

6. References
[1] Cagan, L., Carriero, N., and Zenios, S., “A Computer
Network Approach to Pricing Mortgage-Backed
Securities,” Financial Analysts Journal, March-April
1993.

[2] Clewlow, L., and Carverhill, A., “Quicker on the
Curves.” Risk, 7(5), May 1994.

[3] Huang, C., and McKinley, P., “Communication
Issues in Parallel Computing Across ATM Networks,”
IEEE Parallel & Distributed Technology, Winter 1994.

[4] Ingersoll, J., Theory of Financial Decision Making,
Rowman & Littlefield, 1987.
[5] Kaplan, J., and Nelson, M., “A Comparison of
Queuing, Cluster, and Distributed Computing Systems,”
NASA Technical Report TM-109025 (Revision 1), June
1994.

[6] Lirov, Y., et al, “Intelligent Infrastructure for the
Distributed Front Office,” in Artificial Intelligence in
the Capital Markets, ed. by R.S. Freedman, R. Klein. &
J. Lederman, Probus, 1995.

[7] Beguelin, A., et al, A Users’ Guide to PVM Parallel
Virtual Machine, Oak Ridge National Laboratory, U.S.
Department of Energy Contract, DE-AC-05-84OR21400.

[8] Anderson, T., et al, “A Case for NOW (Networks of
Workstations),” Report for Advanced Research Projects
Agency, Contract N00600-93C-2481.

