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Interest rates are conveniently modeled as solutions to stochastic differential equations.
This Note discusses spot rate models in Section A, forward rate models in Section B, and
Calibration techniques in Section C.  (Details regarding specific models can be found by
looking up the model's name or author in the in the Risk Management References.)

A. Spot Rate Models

Suppose we know the instantaneous spot rate path r(s) for all s in an interval [t, T].  Let
B(t;T) denote the price (at time t) of a riskless zero-coupon bond that matures at time T
given an interest rate path.  Then the value of the bond, given that path is
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Given a set of interest rate paths generated by the risk-neutral probability of occurrence,
the expected value of the bond is approximated by
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Spot rate models are used to generate the interest rate paths.  Most assume that the
instantaneous spot rate r depends on a number of component rates r1, r2,..., rn.  These
component rates, packaged into an n-vector r = <r1, ..., rn> typically denote some
observable economic activity. Depending on the precise model, the spot rate r is either
the first component r =r1 of vector r or is the sum r = r1 + r2 + … + rn of the components.
In either case, the spot rate depends on the evolution of itself or other components.

This evolution is specified by the system of n-stochastic differential equations: a rule that
shows how small changes in r  (denoted by dr) evolve in a small instant of time dt.  The
system takes the form

dr  =  (m - L) dt + S • dZ (S1)

or, for each component rj,  j = 1...n:

drj  =  mj (r1, ..., rn ; t) dt + sj1(r1, … , rn ; t)dZ1 + ...+ sjk(r1, … , rn ; t) dZk (S2)
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Here r, dr, m, and L are n-vectors; S is the n x k diffusion matrix (k is the number of
factors in the model; n is the order of the model), and • denotes the usual vector inner
product.  The parameter L, the market price of risk, is an economic function that
calibrates the model parameters (see the discussion in Section 3 on calibration) to the
observed market interest rates.

The parameters m, L, and S can all be general functions of time t and vector r.  A model
is called time-independent (or stationary, or an Ito diffusion) when these parameters do
not depend explicitly on time t.  Note that we can eliminate an explicit dependency on
time from a model by setting it to another component factor: rn+1 = t.  Consequently, our
taxonomy is reduced by considering only stationary multifactor models.

The random activity is concentrated in the k-vector dZ = <dZ1, ..., dZk> which denotes a
k-factor Brownian motion.  The n x n instantaneous covariance matrix of the n-interest
rate components is the matrix product of S with its transpose:

Σ  = (S ST), with ( Σ ij) = E[dri  drj].

Note that when computing covariances, dZi dZj = 1 for i=j and 0 otherwise.  Given a rate
vector r = <r1, ..., rn>, the simulated spot rate r is (depending on the model) either the
first component of the rate vector (r = r1 ) or the sum of independent rate vector
component rates (r = r1 + r2 + …  + rn).

The stationary multifactor spot models as indicated in (S1)-(S2) include the following:

1.  Independent Multifactor Spot Model: r = r1 + r2 + …  + rn.
mj = mj(r1,… , rn) (Arbitrary supplied functions)
Sjm = sj(r1,… , rn) (Arbitrary supplied functions)
Lj = Lj (r1,… , rn) (Arbitrary supplied functions)

2.  Multifactor Vasicek: r = r1 + r2 + …  + rn.
mj = aj (bj -rj)
Sjm = sj (S is a constant diagonal matrix.)
Lj = a constant

3. Multifactor Cox-Ingersoll-Ross: r = r1 + r2 + …  + rn.
mj = aj (bj -rj)
Sjm = j js r  (S is a constant diagonal matrix.)
Lj = a constant

4. Multifactor Black-Derman-Toy-Karasinski: r = r1 + r2 + …  + rn.
mj = 21

2( log )j j j j jr a b r s− − +
Sjm = j js r  (S is a constant diagonal matrix.)

Lj = a constant
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5. Multifactor Rendelman-Bartter: r = r1 + r2 + …  + rn.
mj = aj (bj -rj)
Sjm = sj rj  (S a constant diagonal matrix)
Lj = a constant

6. Multifactor Chan-Karoly-Longstaff-Sanders: r = r1 + r2 + …  + rn.
mj = 21

2( )j j j ja b a r−
Sjm = j j js r r  (S is a constant diagonal matrix.)
Lj = a constant

7. Multifactor Sandmann-Sondermann: r = r1 + r2 + …  + rn.
mj = 21

2( )j j j ja b a s−

aj = 1 jr
e

−−
Sjm = sj (S is a constant diagonal matrix.)
Lj = a constant

8.  Non-Parametric QES/QRA: r = r1

mj = mj(r1, ..., rn) (Non-parametrically estimated.)
Sjm = s(r1, ..., rn) (Non-parametrically estimated.)
lj =  lj (r1, ..., rn) (Non-parametrically estimated.)
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B. Forward Rate Models

Let B(t;T)  denote the price (at time t) of a riskless zero-coupon bond that matures at time
T.  Suppose we know all instantaneous forward rates fj(t,Tj):
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An infinite set of instantaneous forward rates can be used to generate the entire yield
curve.  Given n-forward rates packaged as n-vector f  = < f1(t,T1), ..., fn(t,Tn)>,  the spot
rate path r is r(t) = f(t,t).  The spot rate path r(t) for t = T1, T2, ..., Tn can be approximated
by the evolving forward rates:

< r(T1), ..., r(Tn)> = < f1(T1,T1), ..., fn(Tn, Tn)>

Consequently, given the spot interest rate path induced by the forward rates, the price at
time t of a riskless zero-coupon bond that matures at time T is approximated by
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Given a set of spot interest rate paths generated by the risk-neutral probability of
occurrence of the forward rates, the expected value of the bond is approximated by
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Forward rate models are used to generate the forward rates and induced spot interest rate
paths.

Models for the forward rate f depend on a function of time t and maturity T.  These
forward models specify a rule for small changes in the yield curve: the spot rate r(t) at
time t is then given by f(t,t).  In practice, one usually divides the time interval [0, T] into n
segments, and form an n-vector T = <T1, ... ,Tn>.

The forward rate models have the following form:

df(t, T) = a(t,T) dt + S(t, T;  f(t,T) ) • dZ (F1)

or, for each time interval Tj, j=1..n:

dfj(t,Tj) =  aj(t, Tj) dt + sj1(t, Tj; f1, ..., fn) dZ1 + … + sjk (t,Tj; f1, ..., fn) dZk (F2)

Here  f  = < f1, ..., fn>,  df  = <df1, ..., dfn>, and  a = < a1, ..., an>, are n-vectors; S  is an
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n x k matrix (k is the number of factors in the model; n is the order of the model,
corresponding to the number of forward rates), and • denotes the usual vector inner
product.

The long term non-random behavior is denoted by the drift a.  The constraint for the drift
term a, established by Heath, Jarrow, and Morton is that

1 1 
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The random activity is concentrated in the k-vector dZ = <dZ1, ..., dZk> which denotes a
k-factor Brownian motion; correlations and covariances of this motion among the interest
rate components are specified by S.  The n x n covariance matrix of the n forward interest
rate components is given by the matrix product of S with its transpose:

Σ = (S ST), with ( Σ ij) = E[dfi  dfj].

In practice, once matrix S is specified, the drift term a should be computed dynamically.

The parameters S can be a general function of time t and vector f.

The multifactor forward models as indicated in (F1)-(F2) include the following:

9.  General Multifactor HJM Forward Rate Model
Sjm = sjm(t, Tj; fj (t, Tj)) (Arbitrary supplied functions).

10. Multifactor Normal Forward Rate Model
Sjm = sjm (S is a constant: a function of Tj - t).

   11. Multifactor Lognormal Forward Rate Model
Sjm = fj (t, Tj )sjm (S is a constant: a function of Tj - t).

12. Multifactor Goldys-Musiela-Sondermann Forward Rate Model

Sjm =
( , )

[1 ]j
jm

f t Tje s
−

−  (S is a constant: a function of Tj - t).

13. Multifactor Gaussian Forward Rate Model
Sjm = 

( )
[1 ]j

m
L T tme s

− −−  (sm and Lm are constants).
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C. Calibration Techniques

The primary tool used to estimate the parameters in a system of stochastic differential
equations are classical regesssion, Cholesky Decomposition, and Principal Component
Analysis (that solves for eigenvalues and eigenvectors).  These tools are used when the
drift and diffusion parameters are constant, parametric, or even non-parametric.

Without loss of generality, we consider multifactor spot models only.

The stochastic differential equation can be approximated by the discretized form, i.e.,

1 1 1 1 1( ) ( ,  ... , ;  ) ( ,  ... , ;  )  ... ( ,  ... , ;  )j j n j n jk n kr t m r r t t s r r t Z s r r t Z∆ = ∆ + ∆ + + ∆

1. Constant and Parametric Drifts and Diffusions

Suppose we have observations of interest rate component changes over a time series over
m small time steps.  We can group the ( )jr t∆ into the following matrix and vectors:
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The means can be estimated by computing the averages of the j∆r over time.  The matrix
S is estimated by performing Cholesky Decomposition on an estimate of the
instantaneous covariance matrix S:

( )Cholesky= ΣS

where the n x n sample instantaneous covariance matrix S is given by
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(Note that other "higher order" estimates for the mean and instantaneous covariance can
be obtained from considering the infinitesimal generator of the stochastic differential
equation.)
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If we want to reduce the number of factors we need to use Principal Component Analysis.
In this case, we decompose the instantaneous covariance matrix S by:

TX XΣ = Λ

where X is the matrix of eigenvectors xj,

, 1..j j j nλΣ = =x x
and so

1/ 2XTS = Λ

with the diagonal matrix of eigenvalues given by
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If we sort the eigenvalues in decreasing order and re-arrange the eigenvector matrix to
correspond with this order —
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— then we can effectively capture only the "principal components" of the variance by
setting the smallest eigenvalues to zero, thereby reducing the effective number of factors.

For parametric models, we need to first perform a regression on the j∆r and on the
sample instantaneous covariance matrix with respect to the functional forms in the
particular parametric models.

2. Non-Parametric Estimation of Drifts and Diffusions

Non-parametric estimation "learns" the functional forms of the drifts and diffusions. The
basic idea is that a probability density function can be inferred directly from the data, and
that the drifts and diffusions can be estimated via non-parametric regression.

Given a set of m d-dimensional vectors x1, ..., xm, a multivariate probability density
function p(x) can be approximated by the multivariate kernel density estimator:
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Here, K(x) is a kernel density function and the hd are kernel bandwidths that correspond
to bin sizes in a histogram.

Choices for the kernel density function include the Gaussian Kernel

2 / 21( )
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and the Epanechnikov Kernel

 23( ) (1 ) for 1 ; 0 otherwise
4
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One practical formula for the bandwidth (that is optimal for a normal distribution) is
usually estimated in terms of the sample standard deviation sd:
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Given a set of data pairs { }),( tty x , the non-parametric multivariate regression function y
= R(x) is given by
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For estimating the parameters of spot models, we set
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for estimating the drift, and
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for estimating the instantaneous covariance. The diffusion S is estimated via Cholesky
Decomposition of the instantaneous covariance estimate.
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Techniques exist for reducing the dimension D.  The procedure associated with Sliced
Inverse Regression first uses histogram techniques to bin the yt and effectively reduces
the number of y samples from m to b:

{ } { }1 2 1 2, ,  ... , , ,  ... ,
binned

m by y y y y y⇒

These binned values are used to create new pairs of associated x values: all x values
associated with a particular yt are averaged together to produce a new set of b
observations:
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We now look at the covariance matrix formed from b sample vectors:

1 2( , ,  ... , )b
D D Cov×Σ = x x x

and perform Principal Component Analysis.  We find that

A AT
D D×Σ = Λ

and use the largest eigenvalues to reduce the dimension from D to E, E<D.  This
transformation is used in a new regression function:
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